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Abstract

Carbon nanotubes (CNTs) are important materials in advanced industries. It is a concern that 

pulmonary exposure to CNTs may induce carcinogenic responses. It has been recently reported 

that CNTs scavenge ROS though non-carbon fibers generate ROS. A comprehensive evaluation of 

ROS scavenging using various kinds of CNTs has not been demonstrated well. The present work 

specifically investigates ROS scavenging capabilities with a series of CNTs and their derivatives 

that were physically treated, and with the number of commercially available CNTs. CNT 

concentrations were controlled at 0.2 through 0.6 wt%. The ROS scavenging rate was measured 

by ESR with DMPO. Interestingly, the ROS scavenging rate was not only influenced by physical 

treatments, but was also dependent on individual manufacturing methods. Ratio of CNTs to 

DMPO/ hydrogen peroxide is a key parameter to obtain appropriate ROS quenching results for 

comparison of CNTs. The present results suggest that dangling bonds are not a sole factor for 

scavenging, and electron transfer on the CNT surface is not clearly determined to be the sole 

mechanism to explain ROS scavenging.

1. Introduction

Carbon nanotubes (CNTs) are expected to have broad potential to materialize new and 

prominent technologies over the next decades [1-3], and CNT hybrid materials with the 

other carbon groups and/or doped elements are also under development [4]. For instance, a 
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specific rubber composite of CNTs is being successfully commercialized, which 

significantly increases recovery from oil wells [5] and may significantly impact the global 

energy market. For another instance, particular types of CNTs exhibit super conductivity 

without addition of other elements [6]. These results will accelerate the product development 

with CNTs further.

It is critically important to evaluate the material safety and develop appropriate in-use 

regulations for CNTs and nano carbon materials prior to the major industrialization. There 

are many reports on the evaluation of CNT safety which discuss the similarity to asbestos in 

shape and suggest that CNTs may exhibit asbestos-like carcinogenicity [7]. It has been 

proposed that conventional approaches be employed using physicochemical characteristics 

and in vitro or in vivo assays to evaluate toxicity of nanoparticles [8]. Maynard et al. [9] 

summarized the early stage studies on nanotechnology and occupational health following 

intensive discussions of possible adverse effects of CNTs [10-15]. The first systematic 

evaluation on CNT toxicity was reported by Shvedova et al. [16] followed by an inhalation 

[17] and bolus instillation [18, 19, 20] studies. CNTs were demonstrated to induce fibrosis 

and granulomatous lesions at relatively low exposure doses. In addition, CNT-induced 

mesothelioma was reported at higher doses after installation into the abdomen or scrotum of 

rodents [21, 22]. Results suggest that inflammation of the mesothelial lining is dependent on 

the length of CNTs [23].

It is essentially required to utilize physicochemical properties of materials to reinforce the 

conventional toxicological evaluations. However, it has been recently argued whether those 

conventional methods are applicable for fibril materials such as CNTs because bolus 

instillation and inhalation evaluation results do not correspond with in vitro tests (as 

discussed at the annual conference of Society of Toxicology Mar. 2012 in San Francisco 

[24]). Results of reactive oxygen species (ROS) measurement appear to correspond with 

CNT in vitro results. Shvedova et al. [25] conducted examination of free radical generation 

after exposure of HaCaT cells to Single-Walled CNTs (SWCNTs) using electron spin 

resonance (ESR) spin trapping. Fenoglio et al. [26] discussed the relationship between ROS 

and biological evaluations. The current spin trapping method is pursued using indirect 

measurement with a spin adduct that forms the stable amine-oxide radical and relatively-

long-lived free radicals. The adduct gives a measurable hyperfine coupling constant of spin, 

and the concentration of free radical is obtained analyzing area of the ESR signal spectrum. 

Measurement of HO and HO2 free radicals with nitrones (the N-oxide of an imine) was 

proposed by Harbor et al. [27]. Among various spin trapping compounds, 5, 5-dimethyl-1-

pyrroline-N-oxide (DMPO) is often used for biological radical spin trapping because it 

dissolves into aqueous solution well with selectivity of radical molecules captured [28]. The 

author, nevertheless, addressed the limitations of DMPO. Shvedova et al. [25] likewise 

discussed the issue that ferrous irons associated with SWCNTs can cause the decomposition 

of hydrogen peroxide or alkoxyl radicals from lipid peroxide, since the unpurified SWCNTs 

used in that study contained up to 30% iron residue. They concluded that raw SWCNTs 

have a relatively high risk potential to induce inflammatory lesion at their manufacturing 

places. Murray et al. [29] reported thereafter that the OH radical generation was mostly 

caused by the iron residue via the Fenton reaction. Furthermore, Porter et al. [18] 
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demonstrated that purified Multi-Walled CNTs (MWCNTs) scavenge OH radicals generated 

by the Fenton reaction and do not generate ROS in an acellular system containing hydrogen 

peroxide. Fenoglio et al. [26, 30, 31] conducted ROS-ESR measurement of CNTs by several 

methods and concluded that purified MWCNTs quench OH radicals.

The present study aims to evaluate ROS generation by number of CNTs and verifies the 

assumption that surface morphology of CNTs affects ROS scavenging potential. In addition, 

we evaluated the importance of the CNT to DMPO/hydrogen peroxide ratio to obtain 

appropriate scavenging rates.

2 Materials and Methods

2.1. Materials

Seventeen kinds of CNTs were prepared and titanium dioxide was used as a reference. As 

shown in Table 1, Group A consists of a cup-stack type of MWCNTs (cs-CNTs) and their 

derivatives. Particular CNTs identified as CS1 of Group A were the pivotal ones in the 

present study and were prepared and characterized intensively. CNTs identified as CS2 

through CS5 were prepared to investigate effects of surface morphological changes. CS2 

was prepared by annealing at 2800°C in inert gas atmosphere. CS3 and CS4 were chopped 

by machines to shorten the length. CS5 was rubbed to de-bulk the agglomerated CS1 

mechanically so that the outer surfaces were damaged significantly. CS4-PT and CS5-PT 

were deposited with platinum (20 wt%) after annealing at 2800 °C. Figure 1 shows a 

transmission electron micrograph of CS1 and CS5-PT. As CS1 has a lot of dangling bonds 

on the surface in comparison with usual CNTs, it was assumed that physical treatments 

might give quantitative differences by significantly causing morphological changes as 

suggested by Fubuni et al. [32]. Group B consists of commercially available MWCNTs. 

This group was designed to compare the dependence on manufacturing processes of CNTs. 

CT1 and CT1-N were synthesized to evaluate nitrogen-doping effects only.

2.2 Measuring method

First of all, dispersibility of the prepared CNTs was tested to avoid agglomeration during the 

ESR measurements. All CNTs were reasonably dispersed in a DMPO and hydrogen 

peroxide solution with surfactant after sonication, with no clumping by CNT agglomeration 

in the pipet or the measuring cell of ESR equipment observed.

The generation and scavenging of radical oxygen species by CNTs were measured at room 

temperature by ESR (JES-FA200, JEOL) using DMPO as the spin trapping agent. ESR 

settings were: frequency 9415.404 MHz, power 0.998 mW, field center 335 mT, sweep time 

2 min., width +/− 5 mT, and modulation frequency 100 kHz. Fresh frozen DMPO (Dojindo 

Laboratories, Kumamoto Japan) was thawed at room temperature and diluted to 100 mM 

with ultrapure water. Hydrogen peroxide (hydrogen peroxide 30%, Wako Pure Chemical 

Industries, Ltd. Japan) was diluted to 1 mM. Ferrous chloride (Iron (II) Chloride 

Tetrahydrate, Wako Pure Chemical Industries, Ltd. Japan) was dissolved into ultrapure 

water at 0.1 mM. Titanium dioxide (Evonik Degussa P25) and CNTs listed in Tables 1-A 

and 1-B were dispersed into aqueous solution made of 16 mg surfactant (Sodium Dodecyl 
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Benzensulfonate, Kanto Chemical Co., Inc. Japan) and 10 ml ultrapure water. ROS 

generation by CNTs was measured with the mixed solution (Mixture A) consisting of 0.1 ml 

of each solution of DMPO, surfactant, hydrogen peroxide and CNTs and the addition of 

ultrapure water for a total volume of 5 ml. Scavenging ROS generated by Fenton reaction 

was measured with the mixed solution (Mixture B) consisting of 0.1 ml of each solution of 

DMPO, ferrous chloride, hydrogen peroxide and CNTs, and ultrapure water for a total 

volume of 5 ml. CNT concentration was determined by weight in the total volume of 5ml. 

The blank solution was made with the ultrapure water instead the CNT solution. Each 

suspension was dispersed by sonication. All of measuring samples were prepared just before 

ESR measurement to avoid any change over time. Each sample was measured five or more 

times repeatedly and averaged after elimination of the highest and lowest values.

3. Results and Discussion

The effect of surfactant on the ESR signal is shown in Figure 2. The results show OH radical 

quenching was proportional to the concentration of surfactant present. Thus, the surfactant 

concentration was kept constant throughout further experiments. Figure 3 shows a typical 

ESR spectrum of ROS generation by the Fenton reaction and quenching by CNTs. CNTs 

and TiO2 in the absence of ferrous chloride did not produce ROS (Figure 3(A)). Figure 3(B) 

shows the spectra that indicate radical quenching by CNTs. OH radicals generated by the 

Fenton reaction between FeCl2 and hydrogen peroxide were apparently quenched by CNTs 

in a concentration dependent manner.

Figure 4(A) and 4(B) show the scavenging rates for various CNTs at concentrations of 0.2, 

0.4 and 0.6 wt%, and those normalized figures by CNT weight concentrations, respectively. 

The scavenging rate was calculated in comparison to the blank. Figure 4(A) clearly shows 

that radical quench ability depends on the particular CNT tested. CA1 and CA2 were 

obtained from the same manufacturer but exhibited different dispersibilities in media. They 

did not quench OH radicals, but enhanced OH radical generation when compared to the 

blank. CA3 behaves as an OH radical scavenger at low concentrations, but generates 

radicals at the highest CNT concentration. As CA4 through CA6 were produced from the 

similar process but did not generate OH radicals, it suggests that CA1 through CA3 included 

something reacting with FeCl2. CB1-T, according to the manufacturer, was a reduced bulk 

volume product of CB1 using glue. However, as CB1-T behaved differently, the glue or the 

gluing process lowered OH radical quenching at the low concentration. CT1-N was the same 

as CT1 but nitrogen-doped. Nitrogen doping reduced quenching. These results suggest that 

different CNTs exhibit different surface activity. Thus, each product must be evaluated 

individually in terms of occupational health and environmental safety. Figure 4(B) 

specifically tells us that balance between CNTs and DMPO/hydrogen peroxide has to be 

considered carefully when conducting ROS evaluations. Scavenging rate may reach almost 

100% at the lowest concentration of CNTs but quenching per weight decreases at the higher 

CNT concentration

The relationship between CNT surface morphology and OH radical quenching was 

evaluated using CS1 and its derivatives. Figure 5 shows results normalized by the individual 

specific surface area. It demonstrates that surface morphology has a small effect on OH 
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radical quenching as does addition of Pt, i.e., augmentation of quenching. Since platinum 

catalyzes hydrogen peroxide, synergetic decomposition of OH radicals may occur. Figure 5 

suggests that the shortest CNT (CS4) exhibited the lowest scavenging rate, and that radical 

quenching corresponds to length in addition to the surface properties. Meanwhile the 

graphitization that increases crystallinity and decreases the number of dangling bonds 

apparently affected quenching. DA1, double-walled CNTs, were also strong ROS quenchers 

(Figure 4). Further investigation is necessary to determine the role of electron charge 

transfer on the CNT surface with and without dangling bonds.

The present study demonstrates two major points. First, commercial CNTs have different 

characteristics, depending on processing, which affect ROS quenching. Second, CNT 

scavenging rate depends on the surface morphology, length and particles deposited on the 

surface. In addition, since CNTs have high OH radical quench ability, concentration ratio 

between CNTs and DMPO/ hydrogen peroxide has to be considered carefully in order to 

obtain appropriate ROS results. The present ROS measuring method by ESR is simple and 

reproducible but chemical reactions of CNTs with DMPO have to be reviewed.

4. Conclusion

Seventeen CNTs at three concentrations were evaluated to determine their ROS generation 

or scavenging rate. The majority of CNTs tested quenched OH radicals. The scavenging rate 

depended on individual characteristics determined by the CNT synthesis process and surface 

morphology. CNTs from Group A demonstrate a dependence on surface morphology, which 

supports the assumption discussed by Fenoglio et al. [30] and Fubini et al. [32]. On the other 

hand, the OH radical degeneration reaction is far more complicated than predicted. 

Parameters to describe CNT scavenging characteristics have to include not only metal 

impurities but also surface morphology, such as the number of dangling bonds, length, and 

deposition of particles. The results suggest necessity of the further investigation of the role 

of impurities and CNT surface features in hydroxyl radical generation or scavenging.
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Figure 1. 
Transmission electron micrograph: (A) cs-MWCNT (CS1), (B) platinum deposited cs-

MWCNT (CS5-PT); dots are Pt particles deposited on the CNT surface.
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Figure 2. 
Interaction of surfactant to OH radical quench using Mixture B without CNTs; The vertical 

axis indicates that the normalized average intensity of the ESR signal was set at 1.00. The 

deviation bars indicates standard deviations.
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Figure 3. 
Typical ESR spectrum intensity of free radical adducts with DMPO using CS1; (A) OH 

radicals generated by CNTs without FeCl2. (B) OH radicals generated by the Fenton 

reaction with FeCl2. The more radicals were scavenged with the higher CNTs concentration.
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Figure 4. 
Scavenge rate of OH radicals by various CNTs with concentration change: (A) Scavenge 

rate at 0.2, 0.4 and 0.6 wt% of CNTs. (B) Scavenge rate per unit CNT weight (0.2 wt%) at 

0.2, 0.4 and 0.6 wt % of CNTs; OH radicals were generated by the Fenton reaction.
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Figure 5. 
Scavenging rate of cs-CNT derivatives; scavenging rates at 0.2 wt% of CNT were 

normalized by specific surface area measured by BET isotherm adsorption.
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Table 1-A

CNT properties used for ROS evaluations (Group A)

CNTs Description SSA
a
 (m2/g)

CS1 Cup-Stack type MWCNT, diameters: outer = 80 ~ 100 nm, inner = 50 ~ 70 nm, length = 5 μm ave., purity > 95wt% 49.0

CS2 Graphitized CS1 annealed at 2800 °C 49.5

CS3 Mechanically chopped CS1, average length = 1.5 μm 52.5

CS4 Mechanically chopped CS1, average length = 1.0 μm 74.2

CS5 Mechanically de-bulked CS1, slightly shorter length than CS1 45.8

CS4-PT Graphitized at 2800 °C of CS4 and deposited with Pt (20wt%) 57.1

CS5-PT Graphitized at 2800 °C of CS5 and deposited with Pt (20wt%) 39.4

a
SSA stands for specific surface area measured by BET isotherm adsorption method.

J Phys Conf Ser. Author manuscript; available in PMC 2015 August 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tsuruoka et al. Page 14

Table 1-B

CNT properties used for ROS evaluations (Group B)

CNTs Properties
a Making methods

Ave. outer diameter (nm) Ave. Length (μm) Purity (wt%)

DA1 < 1.5 N/A > 95
CVD

b

CA1 13 ~ 16 >1 > 95
CVD

b

CA2 13 ~ 16 >1 > 95
CVD

b

CA3 ~ 13 1.5 > 90
CVD

b

CA4 10 ~ 15 0.1 ~ 10 > 90
CVD

b

CA5 0.7 ~ 70 10 > 95
CVD

b

CA6 15 3 > 95
CVD

b

CB1 40 ~ 90
4.9

d 99
FCM

c

CB1-T 40 ~ 90
4.9

d 99
FCM

c

CB2 80 N/A > 99
FCM

c

a
Properties of manufactured CNTs are from manufacturers’ specifications.

b
Catalytic chemical vapor deposition

c
Floating catalyst method

d
The measured length by scanning electron micrograph
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